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Abstract: - Software defect prediction is a critical task in software engineering that aims to 

identify faulty components early in the development lifecycle, thereby reducing cost and 

improving software quality. This project explores the effectiveness of the Random Forest 

machine learning algorithm for predicting software defects, with a particular focus on 

optimizing model accuracy. The Random Forest algorithm, known for its robustness and ability 

to handle high-dimensional data, is applied to benchmark software defect datasets. The study 

involves extensive preprocessing, including feature selection and normalization, followed by 

hyperparameter tuning to enhance prediction performance. Evaluation metrics such as 

accuracy, precision, recall, F1-score, and AUC-ROC are used to assess the model's 

effectiveness. Experimental results demonstrate that the optimized Random Forest model 

achieves high predictive accuracy and outperforms several baseline models. This work 

highlights the potential of ensemble learning methods, particularly Random Forest, as a reliable 

approach for software defect prediction, aiding developers in creating more reliable and 

maintainable software systems.    
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I. INTRODUCTION 

SDP is essential to guaranteeing the dependability and caliber of software systems. Finding 

flawed modules early in the development process is essential to lowering maintenance costs 
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and enhancing overall performance as software complexity rises. By identifying patterns in 

past software data, machine learning techniques have become powerful instruments for 

automating defect prediction. The Random Forest algorithm is unique among these methods 

because of its excellent accuracy, capacity to deal with unbalanced data, and resistance to 

overfitting. The goal of this research is to employ the Random Forest algorithm to maximize 

the accuracy of software defect prediction. The objective is to improve prediction performance 

and facilitate improved decision-making in software quality assurance by utilizing 

preprocessing approaches, feature selection, and hyperparameter tuning. 

SDP employs software metrics (also referred to as software features or software attributes, such 

as lines of code (LOC), and change information to predict their defect-proneness to support 

software testing activities [3]. Software defects have become one of the main reasons for the 

failure of large engineering projects, leading to huge economic losses in the 21st century. In 

software quality, various defect prediction techniques have been proposed. Essentially, such 

techniques rely on different predictors, including source code metrics (e.g., coupling, cohesion, 

size). Software defect prediction can help to allocate testing resources efficiently through 

ranking software modules according to their defects. Existing software defect prediction 

models that are optimized to predict explicitly the number of defects in a software module 

might fail to give an accurate order because it is very difficult to predict the exact number of 

defects in a software module due to noisy data [4].  

Each software defect is generated under different conditions and environments, and hence 

differs in its specific characteristics. A software defect may have an enormous negative effect 

upon software quality. Therefore, defect prediction is extremely essential in the field of 

software quality and software reliability. Defect prediction is comparatively a novel research 

area of software quality engineering [5]. Current defect prediction work focuses on  

 

1) Estimating the number of defects remaining in software systems,  

2) Discovering defect associations, and  

3) Classifying the defect-proneness of software components, typically into two classes, defect-

prone and not defect-prone.  
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The outcome of the forecast can be utilized as a crucial metric by the software developer to 

regulate the software development process. SDP empirical research frequently suffer from 

limited generalizations and have significant biases with regard to data quality [6, 7]. It is 

anticipated that defect predictors will lower the cost of supplying those software systems while 

also enhancing software quality. Since the creation of the Promise Repository in 2005, SDP 

research has expanded quickly. It enables researchers to create repeatable, comparable models 

across studies and provides a library of publicly available defect prediction data sets from 

actual projects. In order to create prediction models for SDP, a lot of research has been done 

so far on metrics that describe code modules and learning techniques [8]. 

 

II. SOFTWARE QUALITY AND SD PREDICTION 

Software quality refers to the degree to which a software system meets specified requirements 

and user expectations, encompassing aspects such as functionality, reliability, efficiency, 

maintainability, and usability. High-quality software is essential for ensuring user satisfaction, 

reducing maintenance costs, and enhancing system performance. 

Software Defect (SD) prediction is a vital process within software quality assurance. It aims to 

identify parts of a software system that are likely to contain defects or bugs before they manifest 

during deployment or use. Early prediction of software defects helps in prioritizing testing 

efforts, improving resource allocation, and reducing time-to-market. 

Traditional software testing methods are often time-consuming and costly, especially when 

applied to large-scale software systems. As a result, data-driven approaches using machine 

learning have gained traction for automating and enhancing defect prediction. These methods 

leverage historical data, such as source code metrics, bug reports, and change logs, to train 

predictive models that can forecast the likelihood of defects in new or modified code. 

Among various machine learning techniques, ensemble methods like Random Forest offer high 

accuracy and robustness in defect prediction tasks. By combining multiple decision trees, 

Random Forest reduces variance and improves generalization, making it suitable for complex 

and noisy software data. This project focuses on utilizing and optimizing Random Forest to 

improve the accuracy of software defect prediction, thereby contributing to the development 

of more reliable software systems. 
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2.2 Software Defect Prediction  

The error in the algorithm or in the software program will not permit the software product to 

satisfy the user requirements and because of that, the user expectations and the software 

requirement standards are not maintained by the product and is also called as software defect. 

The error in the software sometimes produce unexpected outcome and cause software 

malfunctioning too. There are several ways to define the defects produced by the software: -  

 

• The defect or the bug in the application may be caused or created due to some mistake of 

the programmer.  

• If there is a deviation in the expected result produced by the software and it is not producing 

the result specified or defined in Specification document, then it is considered as a defect.  

• Failing to satisfy the end user expectations is considered as defect in the software and it is 

mainly due to the bugs arising in the program or the methods used when the product is 

developed. 

 

The foremost thing when developing a piece of software is to produce it with great eminence 

and with high excellence. Superiority of the software is measured by the degree to which the 

piece of code meets the requirements specified in the requirement specification document. [13]. 

 

III. PROPOSED METHODOLOGY 

A system that is used to understand the concept and its environment using a simplified 

interpretation of the environment using model is called cognitive system. The step that we pass 

to construct the model is known as inductive learning. The Cognitive system is able to combine 

its experience by constructing new structures is patterns. The constructed model and pattern by 

cognitive system is called machine learning. Models that are described as predictive since it 

can be used to predict the output of a function (target function) for a given value in the 

function‘s domain while informative pattern are characterized only describes the portion of 

data.  

Random Forest is an ensemble method based on principle of bagging. It uses decision trees as 

base classifiers. To generate each single tree in Random Forest, Breiman followed following 
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steps: If the number of records in the training set is N, then N records are sampled at random 

but with replacement, from the original data; this is bootstrap sample.  

 

 

Figure 1: Random Forest classifier 

 

This sample will be the training set for growing the tree. If there are M input variables, a number 

m << M is selected such that at each node, m variables are selected at random out of M and the 

best split on these m attributes is used to split the node. The value of m is held constant while 

the forest is growing. Each tree is grown to the largest possible extent. There is no pruning. In 

this way, multiple trees are induced in the forest; the number of trees is pre-decided by the 

parameter Ntree. The number of variables (m) selected at each node is referred to as mtry or k 

in the literature. The depth of the tree can be controlled by a parameter nodesize (i.e. number 

of instances in the leaf node), which is usually set to one. Once the forest is trained or built as 

explained above, to classify a new instance, it is run across all the trees grown in the forest. 

Each tree gives classification for the new instance which is recorded as a vote. The votes from 

all trees are combined and the class for which maximum votes are counted (majority voting) is 

declared as the classification of the new instance. 
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IV. SIMULATION RESULTS 

In this test case, we considered other standard classification scheme such as SVM, LR and RF 

classifier. 

 

Parameter: 

Accuracy gives a proportion of how precise your model is in anticipating the real up-sides out 

of the absolute up-sides anticipated by your framework. Review gives the quantity of real up-

sides caught by our model by grouping these as obvious positive. F-measure can give a 

harmony among accuracy and review, and it is liked over precision where information is 

uneven. 

 

                                                                                                                                                                            

 

 

 

                                                                                                                                                                            

 

 

                                                                                                                                                                                            

Where, 

TP = True Positive,  

TN = True Negative 

FP = False Positive,  

FN = False Negative 

 

Data Information: 

PC1 dataset contains total 10922 entries which are given below 
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Data Sample: 

 

 

Classifier Technique: 

 

 

 

Data set: in the table 1 as the predicted outcome using SVM classifier in terms of defective 

(D) and non-defective (ND) classes. 

 

Table 1: PC1 Prediction for SVM  

Actual class Predicted class 

ND D 

D 270 49 

ND 15 1843 

 

It is really tough to find a better separation between two groups. Certainly, the results obtained 

from the tests may overlay with one another.  
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Table II: PC1 Prediction for LR  

Actual class Predicted class 

ND D 

D 327 14 

ND 8 1836 

 

Table III: Table 1: PC1 Prediction for RF  

Actual class Predicted class 

ND D 

D 339 2 

ND 0 1844 

 

Table IV: Comparison Result 

Classifier Precision Recall Accuracy 

SVM 99.34% 96.98% 96.84% 

LR 99.56% 99.24% 98.99% 

RF 100% 99.89% 99.90% 
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Figure 2: Graphical Represent of Precision 

 

 

Figure 3: Graphical Represent of Recall 
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Figure 4: Graphical Represent of Accuracy 

 

Table V displays the results of Muhammad Azam et al. [1] and implemented method in terms 

of accuracy. Malarvizhi et al. [1] give an accuracy of 93.05% for SVM, 93.32% for LR and 

93.86% for RF. The implemented method provides an accuracy of 96.84% for SVM, 98.99% 

for LR and 99.90% for RF. Clearly, the implemented method is a 6.04% improvement accuracy 

compared to Muhammad Azam et al. [1]. Fig. 5 shows the graphical representation of the 

comparison result. 

 

Table V: Comparison Results 

Design  Method Accuracy 

Muhammad Azam 

et al. [1] 

SVM 93.05% 

LR 93.32% 

RF 93.86% 

Implemented 

Design 

SVM 96.84% 

LR 98.99% 

RF 99.90% 
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Figure 5: Graphical Represent of Accuracy 

 

V. CONCLUSION 

In this study, we investigated the application of the Random Forest machine learning algorithm 

for software defect prediction, with a strong emphasis on optimizing its accuracy. The results 

indicate that Random Forest, due to its ensemble nature and robustness against overfitting, 

performs exceptionally well in identifying defective software modules. By applying effective 

preprocessing techniques and fine-tuning the model's hyperparameters, we achieved significant 

improvements in prediction accuracy and overall model performance. The optimized model 

demonstrated strong results across multiple evaluation metrics, including precision, recall, F1-

score, and AUC-ROC, proving its reliability and efficiency. This research validates the 

effectiveness of Random Forest as a powerful tool for software quality assurance and supports 

its use in real-world software development environments to proactively detect and mitigate 

defects. Future work may involve integrating deep learning techniques or hybrid models to 

further enhance defect prediction capabilities. 
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