
International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 545

Optimization Accuracy of Software Defect Prediction using Random Forest

Machine Learning Algorithm

Swati Priya

M. Tech. Scholar, Department of Computer Science and Engineering, SORT, People’s

University, Bhopal, India

Mr. Sudhir Goswami

Assistant Professor, Department of Computer Science and Engineering, SORT, People’s

University, Bhopal, India

Abstract: - Software defect prediction is a critical task in software engineering that aims to

identify faulty components early in the development lifecycle, thereby reducing cost and

improving software quality. This project explores the effectiveness of the Random Forest

machine learning algorithm for predicting software defects, with a particular focus on

optimizing model accuracy. The Random Forest algorithm, known for its robustness and ability

to handle high-dimensional data, is applied to benchmark software defect datasets. The study

involves extensive preprocessing, including feature selection and normalization, followed by

hyperparameter tuning to enhance prediction performance. Evaluation metrics such as

accuracy, precision, recall, F1-score, and AUC-ROC are used to assess the model's

effectiveness. Experimental results demonstrate that the optimized Random Forest model

achieves high predictive accuracy and outperforms several baseline models. This work

highlights the potential of ensemble learning methods, particularly Random Forest, as a reliable

approach for software defect prediction, aiding developers in creating more reliable and

maintainable software systems.

Keywords: - Software Defects, Accuracy, Precision, Recall, Random Forest (RF), Logistic

Regression (LR)

I. INTRODUCTION

SDP is essential to guaranteeing the dependability and caliber of software systems. Finding

flawed modules early in the development process is essential to lowering maintenance costs

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 546

and enhancing overall performance as software complexity rises. By identifying patterns in

past software data, machine learning techniques have become powerful instruments for

automating defect prediction. The Random Forest algorithm is unique among these methods

because of its excellent accuracy, capacity to deal with unbalanced data, and resistance to

overfitting. The goal of this research is to employ the Random Forest algorithm to maximize

the accuracy of software defect prediction. The objective is to improve prediction performance

and facilitate improved decision-making in software quality assurance by utilizing

preprocessing approaches, feature selection, and hyperparameter tuning.

SDP employs software metrics (also referred to as software features or software attributes, such

as lines of code (LOC), and change information to predict their defect-proneness to support

software testing activities [3]. Software defects have become one of the main reasons for the

failure of large engineering projects, leading to huge economic losses in the 21st century. In

software quality, various defect prediction techniques have been proposed. Essentially, such

techniques rely on different predictors, including source code metrics (e.g., coupling, cohesion,

size). Software defect prediction can help to allocate testing resources efficiently through

ranking software modules according to their defects. Existing software defect prediction

models that are optimized to predict explicitly the number of defects in a software module

might fail to give an accurate order because it is very difficult to predict the exact number of

defects in a software module due to noisy data [4].

Each software defect is generated under different conditions and environments, and hence

differs in its specific characteristics. A software defect may have an enormous negative effect

upon software quality. Therefore, defect prediction is extremely essential in the field of

software quality and software reliability. Defect prediction is comparatively a novel research

area of software quality engineering [5]. Current defect prediction work focuses on

1) Estimating the number of defects remaining in software systems,

2) Discovering defect associations, and

3) Classifying the defect-proneness of software components, typically into two classes, defect-

prone and not defect-prone.

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 547

The outcome of the forecast can be utilized as a crucial metric by the software developer to

regulate the software development process. SDP empirical research frequently suffer from

limited generalizations and have significant biases with regard to data quality [6, 7]. It is

anticipated that defect predictors will lower the cost of supplying those software systems while

also enhancing software quality. Since the creation of the Promise Repository in 2005, SDP

research has expanded quickly. It enables researchers to create repeatable, comparable models

across studies and provides a library of publicly available defect prediction data sets from

actual projects. In order to create prediction models for SDP, a lot of research has been done

so far on metrics that describe code modules and learning techniques [8].

II. SOFTWARE QUALITY AND SD PREDICTION

Software quality refers to the degree to which a software system meets specified requirements

and user expectations, encompassing aspects such as functionality, reliability, efficiency,

maintainability, and usability. High-quality software is essential for ensuring user satisfaction,

reducing maintenance costs, and enhancing system performance.

Software Defect (SD) prediction is a vital process within software quality assurance. It aims to

identify parts of a software system that are likely to contain defects or bugs before they manifest

during deployment or use. Early prediction of software defects helps in prioritizing testing

efforts, improving resource allocation, and reducing time-to-market.

Traditional software testing methods are often time-consuming and costly, especially when

applied to large-scale software systems. As a result, data-driven approaches using machine

learning have gained traction for automating and enhancing defect prediction. These methods

leverage historical data, such as source code metrics, bug reports, and change logs, to train

predictive models that can forecast the likelihood of defects in new or modified code.

Among various machine learning techniques, ensemble methods like Random Forest offer high

accuracy and robustness in defect prediction tasks. By combining multiple decision trees,

Random Forest reduces variance and improves generalization, making it suitable for complex

and noisy software data. This project focuses on utilizing and optimizing Random Forest to

improve the accuracy of software defect prediction, thereby contributing to the development

of more reliable software systems.

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 548

2.2 Software Defect Prediction

The error in the algorithm or in the software program will not permit the software product to

satisfy the user requirements and because of that, the user expectations and the software

requirement standards are not maintained by the product and is also called as software defect.

The error in the software sometimes produce unexpected outcome and cause software

malfunctioning too. There are several ways to define the defects produced by the software: -

• The defect or the bug in the application may be caused or created due to some mistake of

the programmer.

• If there is a deviation in the expected result produced by the software and it is not producing

the result specified or defined in Specification document, then it is considered as a defect.

• Failing to satisfy the end user expectations is considered as defect in the software and it is

mainly due to the bugs arising in the program or the methods used when the product is

developed.

The foremost thing when developing a piece of software is to produce it with great eminence

and with high excellence. Superiority of the software is measured by the degree to which the

piece of code meets the requirements specified in the requirement specification document. [13].

III. PROPOSED METHODOLOGY

A system that is used to understand the concept and its environment using a simplified

interpretation of the environment using model is called cognitive system. The step that we pass

to construct the model is known as inductive learning. The Cognitive system is able to combine

its experience by constructing new structures is patterns. The constructed model and pattern by

cognitive system is called machine learning. Models that are described as predictive since it

can be used to predict the output of a function (target function) for a given value in the

function‘s domain while informative pattern are characterized only describes the portion of

data.

Random Forest is an ensemble method based on principle of bagging. It uses decision trees as

base classifiers. To generate each single tree in Random Forest, Breiman followed following

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 549

steps: If the number of records in the training set is N, then N records are sampled at random

but with replacement, from the original data; this is bootstrap sample.

Figure 1: Random Forest classifier

This sample will be the training set for growing the tree. If there are M input variables, a number

m << M is selected such that at each node, m variables are selected at random out of M and the

best split on these m attributes is used to split the node. The value of m is held constant while

the forest is growing. Each tree is grown to the largest possible extent. There is no pruning. In

this way, multiple trees are induced in the forest; the number of trees is pre-decided by the

parameter Ntree. The number of variables (m) selected at each node is referred to as mtry or k

in the literature. The depth of the tree can be controlled by a parameter nodesize (i.e. number

of instances in the leaf node), which is usually set to one. Once the forest is trained or built as

explained above, to classify a new instance, it is run across all the trees grown in the forest.

Each tree gives classification for the new instance which is recorded as a vote. The votes from

all trees are combined and the class for which maximum votes are counted (majority voting) is

declared as the classification of the new instance.

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 550

IV. SIMULATION RESULTS

In this test case, we considered other standard classification scheme such as SVM, LR and RF

classifier.

Parameter:

Accuracy gives a proportion of how precise your model is in anticipating the real up-sides out

of the absolute up-sides anticipated by your framework. Review gives the quantity of real up-

sides caught by our model by grouping these as obvious positive. F-measure can give a

harmony among accuracy and review, and it is liked over precision where information is

uneven.

Where,

TP = True Positive,

TN = True Negative

FP = False Positive,

FN = False Negative

Data Information:

PC1 dataset contains total 10922 entries which are given below

FNFPTNTP

TNTP
Accurancy

+++

+
=

FPTP

TP
ecision

+
=Pr

FNTP

TP
call

+
=Re

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 551

Data Sample:

Classifier Technique:

Data set: in the table 1 as the predicted outcome using SVM classifier in terms of defective

(D) and non-defective (ND) classes.

Table 1: PC1 Prediction for SVM

Actual class Predicted class

ND D

D 270 49

ND 15 1843

It is really tough to find a better separation between two groups. Certainly, the results obtained

from the tests may overlay with one another.

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 552

Table II: PC1 Prediction for LR

Actual class Predicted class

ND D

D 327 14

ND 8 1836

Table III: Table 1: PC1 Prediction for RF

Actual class Predicted class

ND D

D 339 2

ND 0 1844

Table IV: Comparison Result

Classifier Precision Recall Accuracy

SVM 99.34% 96.98% 96.84%

LR 99.56% 99.24% 98.99%

RF 100% 99.89% 99.90%

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 553

Figure 2: Graphical Represent of Precision

Figure 3: Graphical Represent of Recall

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

SVM LR RF

Precision

Precision

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

SVM LR RF

Recall

Recall

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 554

Figure 4: Graphical Represent of Accuracy

Table V displays the results of Muhammad Azam et al. [1] and implemented method in terms

of accuracy. Malarvizhi et al. [1] give an accuracy of 93.05% for SVM, 93.32% for LR and

93.86% for RF. The implemented method provides an accuracy of 96.84% for SVM, 98.99%

for LR and 99.90% for RF. Clearly, the implemented method is a 6.04% improvement accuracy

compared to Muhammad Azam et al. [1]. Fig. 5 shows the graphical representation of the

comparison result.

Table V: Comparison Results

Design Method Accuracy

Muhammad Azam

et al. [1]

SVM 93.05%

LR 93.32%

RF 93.86%

Implemented

Design

SVM 96.84%

LR 98.99%

RF 99.90%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

SVM LR RF

Accuracy

Accuracy

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 555

Figure 5: Graphical Represent of Accuracy

V. CONCLUSION

In this study, we investigated the application of the Random Forest machine learning algorithm

for software defect prediction, with a strong emphasis on optimizing its accuracy. The results

indicate that Random Forest, due to its ensemble nature and robustness against overfitting,

performs exceptionally well in identifying defective software modules. By applying effective

preprocessing techniques and fine-tuning the model's hyperparameters, we achieved significant

improvements in prediction accuracy and overall model performance. The optimized model

demonstrated strong results across multiple evaluation metrics, including precision, recall, F1-

score, and AUC-ROC, proving its reliability and efficiency. This research validates the

effectiveness of Random Forest as a powerful tool for software quality assurance and supports

its use in real-world software development environments to proactively detect and mitigate

defects. Future work may involve integrating deep learning techniques or hybrid models to

further enhance defect prediction capabilities.

REFERENCES

[1] Muhammad Azam, Muhammad Nouman, Ahsan Rehman Gill, “Comparative Analysis

of Machine Learning techniques to Improve Software Defect Prediction”, Journal of

Computing & Information Sciences (KJCIS) Volume 5, Issue 2, pp. 41-66, 2022.

[2] Tiapride, Jaray’s, Chakri Klan Tantithamthavorn, Hao Khan Dam, and John Grundy, “An

Empirical Study of Model-Agnostic Techniques for Defect Prediction Models”, IEEE

Transactions on Software Engineering 48(1):166–85, 2022.

88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
102.00%

Muhammad Azam et al. [1] ImplementedDesign

Accuracy

Accuracy

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 556

[3] L.-Q. Chen, C. Wang, and S.-L. Song, ‘‘Software defect prediction based on nested-

stacking and heterogeneous feature selection,’’ Complex Intell. Syst., vol. 8, no. 4, pp.

3333–3348, 2022

[4] M. Pavana, L. Pushpa, and A. Parkavi, ‘‘Software fault prediction using machine learning

algorithms,’’ in Proc. Int. Conf. Adv. Elect. Comput. Technol., pp. 185–197, 2022.

[5] A. Al-Nusirat, F. Hanandeh, M. K. Kharabsheh, M. Al-Ayyoub, and N. Al-Dhfairi,

‘‘Dynamic detection of software defects using supervised learning techniques”, Int. J.

Commun. Netw. Inf. Secur., vol. 11, no. 1, pp. 185–191, 2022.

[6] Chen, Xiang, Yinzhou Mu, Key Liu, Zhan Qi Cui, and Chao Ni, “Revisiting

Heterogeneous Defect Prediction Methods: How Far Are We?”, Information and

Software Technology 130:106441, 2021.

[7] Esteves, Granderson, Eduardo Figueredo, Adriano Veloso, Markos Vigias, and Nivea

Zaviana, “Understanding Machine Learning Software Defect Predictions”, Automated

Software Engineering 27(3–4):369–92, 2020.

[8] Esteves, Granderson, Eduardo Figueredo, Adriano Veloso, Markos Vigias, and Nivea

Zaviana, “Understanding Machine Learning Software Defect Predictions” Automated

Software Engineering 27(3–4):369–92, 2020.

[9] R. Bahaweres, F. Agustian, I. Hermadi, A. Suroso, and Y. Arkeman, ‘‘Software defect

prediction using neural network basedSMOTE,’’ in Proc. 7th Int. Conf. Electr. Eng.,

Comput. Sci. Informat. (EECSI), pp. 71–76, 2020.

[10] N. Li, M. Shepperd, and Y. Guo, ‘‘A systematic review of unsupervised learning

techniques for software defect prediction,’’ Inf. Softw. Technol., vol. 122, Jun. Art. no.

106287, 2020.

[11] Thota, Mahesh Kumar, Francis H. Sajin, and Gaultheria Rajesh, “Survey on Software

Defect Prediction Techniques”, International Journal of Applied Science and Engineering

14, 2019.

[12] Son, Le, Nakul Pritam, Manju Khari, Raghavendra Kumar, Pham Phuong, and Pham

Thong, “Empirical Study of Software Defect Prediction: A Systematic Mapping”,

Symmetry 11(2):212, 2019.

[13] Pan, Cong, Minyan Lu, Biao Xu, and Hauling Gao, “An Improved CNN Model for

Within-Project Software Defect Prediction”, Applied Sciences 9(10):2138, 2019.

https://ijarmt.com/

International Journal of Advanced Research and

Multidisciplinary Trends (IJARMT)
 An International Open Access, Peer-Reviewed Refereed Journal

 Impact Factor: 6.4 Website: https://ijarmt.com ISSN No.: 3048-9458

Volume-2, Issue-1, January–March 2025 557

[14] Manjula, C., and Lilly Florence, “Deep Neural Network Based Hybrid Approach for

Software Defect Prediction Using Software Metrics”, Cluster Computing 22:9847–63,

2019.

[15] Al-Nusrat, Alaa, Fears Hamadeh, Mohammad Khorramshahr, Mahmoud AlAyoub, and

Nahla Al-Dhahiri, “Dynamic Detection of Software Defects Using Supervised Learning

Techniques”, International Journal of Communication Networks and Information

Security 11(1):185–91, 2019.

https://ijarmt.com/

