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Abstract  

Photonic crystals (PCs) are periodic dielectric (and sometimes metal–dielectric or 

metamaterialbased) structures that enable strong control over electromagnetic wave (EMW) 

propagation through the formation of photonic band gaps (PBGs). The theoretical foundation 

of PCs lies in Maxwell’s equations combined with appropriate constitutive relations and 

boundary conditions at material interfaces. In this paper, we present a concise theory and 

mathematical formulation for optical wave propagation in layered media with special emphasis 

on one-dimensional (1-D) periodic structures. The refractive index (optical density) is 

introduced as a key phenomenological parameter connecting macroscopic material response to 

microscopic polarization mechanisms. For isotropic media, the electromagnetic fields satisfy 

decoupled Helmholtz-type wave equations, while for nonuniform periodic media the fields 

obey a master equation that leads to Bloch-mode solutions and dispersion relations within the 

first Brillouin zone. The transfer matrix method (TMM) is described as an efficient technique 

for evaluating band structure, reflectance, transmittance and defect-mode behavior in 1-D 

photonic crystals. The formulation is extended conceptually to anisotropic and composite 

media where permittivity and permeability may become tensor quantities, enabling hyperbolic 

dispersion and tunable optical responses. This theory provides a rigorous basis for designing 

photonic devices such as filters, mirrors, sensors and waveguiding structures across optical and 

terahertz regimes.  
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Introduction   

The propagation of electromagnetic waves in material media is governed by the interaction of 

electric and magnetic fields with the charged constituents of matter. This interaction is central 

to optics and photonics, where the goal is not only to understand light–matter behavior but also 

to engineer materials and structures capable of controlling light in a predictable and efficient 

way. Among such engineered media, photonic crystals (PCs) have emerged as a fundamental 

class of periodic optical materials that can manipulate the flow of electromagnetic energy in 

close analogy to how crystalline solids control electron motion through electronic band 

structures. The defining feature of photonic crystals is the periodic modulation of refractive 

index (or equivalently, dielectric permittivity), which leads to photonic band structures and the 

formation of forbidden frequency ranges called photonic band gaps (PBGs). Within these gaps, 

wave propagation is suppressed, enabling applications including highly reflecting mirrors, 

narrowband filters, resonant cavities, waveguides and biosensors.  
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A key step in modeling photonic crystal behavior is the use of macroscopic optical parameters  

such as refractive index, dielectric constant, susceptibility and conductivity to describe 

complex microscopic interactions in an averaged form. In most optical systems of interest, the 

wavelength of light is much larger than the interatomic spacing, which justifies the continuum 

approximation. Under this assumption, the material response can be expressed through 

constitutive relations that connect electric displacement D\mathbf{D}D to electric field 

E\mathbf{E}E and magnetic induction B\mathbf{B}B to magnetic field intensity 

H\mathbf{H}H. For linear, homogeneous media, these relations are commonly written as 

D=εE\mathbf{D}=\varepsilon \mathbf{E}D=εE and B=μH\mathbf{B}=\mu 

\mathbf{H}B=μH, where ε\varepsilonε and μ\muμ represent permittivity and permeability, 

respectively. In optical frequency regimes, the polarization response of electrons particularly 

bound and conduction electrons dominates and absorption can be represented through complex 

permittivity (or a complex refractive index) whose imaginary part accounts for attenuation. The 

refractive index nnn, also called optical density in many contexts, is a central quantity because 

it directly determines phase velocity and wave propagation in a medium. For non-magnetic 

media, the refractive index is largely governed by permittivity, while in general form it satisfies 

n2=εrμrn^2=\varepsilon_r \mu_rn2=εrμr, where εr\varepsilon_rεr and μr\mu_rμr are relative 

permittivity and relative permeability. This relation highlights why engineered materials such 

as metamaterials can support unusual propagation regimes when ε\varepsilonε and μ\muμ are 

tailored. In particular, materials with positive refractive index (PIMs) behave conventionally, 

whereas negative-index materials (NIMs) can exhibit reversed refraction, backward-wave 

propagation and non-intuitive phase–energy relationships. The connection between refractive 

index and wave vector is expressed through 

k=(nω/c)k^\mathbf{k}=(n\omega/c)\hat{k}k=(nω/c)k^, showing that both wavelength and 

phase accumulation depend on the optical density and operating frequency. Wave behavior at 

interfaces is equally important because photonic crystals consist of repeated interfaces between 

materials of different refractive indices. Boundary conditions derived from Maxwell’s 

equations enforce continuity of tangential components of E\mathbf{E}E and H\mathbf{H}H 

across interfaces (with corresponding conditions on D\mathbf{D}D and B\mathbf{B}B 

depending on charge and current distributions). These conditions lead to reflection and 

transmission at each layer boundary. In a periodic multilayer system, multiple reflections 

interfere constructively and destructively depending on optical path lengths, incidence angles, 

polarization (TE/TM) and refractive index contrast. When the periodicity is comparable to the 

wavelength, Bragg scattering becomes significant and produces photonic band gaps frequency 

regions in which propagating solutions are not allowed and the fields become evanescent.  

For isotropic media, Maxwell’s equations can be combined to yield decoupled wave equations 

often written in Helmholtz form for either electric or magnetic fields. However, in periodic 

media, permittivity varies spatially and the resulting wave equation becomes an eigenvalue 

problem. A widely used formulation is the “master equation” for photonic crystals, typically 

expressed in vector form for the magnetic field:  
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Because the medium is periodic, Bloch’s theorem applies: electromagnetic modes take the form 

of Bloch waves characterized by a wave vector within the first Brillouin zone and 

eigenfrequencies form bands ωn(k)\omega_n(\mathbf{k})ωn(k). The resulting dispersion 

relations reveal allowed photonic bands and forbidden gaps, providing the conceptual and 

computational basis for designing photonic devices. For one-dimensional photonic crystals, 

where periodicity exists along a single axis, the transfer matrix method (TMM) offers an 

efficient way to compute band structure and spectral properties. In TMM, each layer is 

represented by a characteristic matrix connecting field amplitudes at one boundary to those at 

the next. Multiplying matrices across a unit cell yields a total transfer matrix from which Bloch 

wave number, reflectance, transmittance and defect-state resonances can be derived. 

Importantly, TMM accommodates oblique incidence and polarization dependence, making it 

suitable for real device modeling. Beyond isotropic media, many modern structures employ 

anisotropic, lossy, plasmabased, superconducting, or hyperbolic composite layers, where 

permittivity (and sometimes permeability) must be treated as tensors. In such cases, dispersion 

surfaces may become hyperbolic and support high-kkk modes, enabling extreme confinement 

and tunability. Effective medium theory further provides approximate analytical expressions 

for composite permittivity in multilayer metal–dielectric systems, linking optical response to 

filling fraction and constituent parameters. Overall, the theory and mathematical formulation 

of photonic crystals unite electromagnetic fundamentals with periodic-structure physics. This 

framework enables systematic prediction of band gaps, field localization and spectral 

signatures and it supports a wide range of applications from filtering and sensing to integrated 

photonic circuitry.  

Isotropic and anisotropic medium  

It was also seen earlier that the optical density of the material is in dependence on two 

physical properties of the materials; i.e, electric permittivity and magnetic permeability. 

When EMWs are interacted with these materials, such interaction is related to these 

parameters with the polarizations of material. Nevertheless, ε or μ is tensor quantity. 

Therefore, the materials are two types: (i) isotropic material when ε and μ are independent of 

direction whereas (ii) anisotropic material when ε and μ is direction dependent. The isotropic 

and anisotropic materials follow cubic symmetry mechanism and inhomogeneous medium 

follow composite asymmetry, respectively. It has been observed from the time of Maxwell 

that transport properties of randomly inhomogeneous materials have been of great intrigue to 

the researchers. In the today ‘s world of science and technology, novel materials practicing 

the novel material demand of high-speed information are characterized with unique optical 

properties which the already existing materials can not possess. The scientists always manage 

to exhaust the amount of research on manufacturing or developing materials with such unique 

properties or modify the available materials and the present materials are fabricated by the 
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available technique, e.g. the preparation of thin films in nanoscience and nanotechnology and 

so on.  

It is to state of the several approaches that provide the best optical properties of materials 

called composite materials, the properties of composite thin films are usually changed in a 

more convenient way and thus it is easy to implement. Evaporation, sputtering and ion beams 

assisted depositions are also the techniques of modification or deposition of thin films which 

have been proven to be quite successful in preparing composite or inhomogeneous or 

anisotropic dielectric thin films. It is demonstrated that the manufacturing of thin films using 

the above techniques is helpful in the fabrications of optical thin film devices. Dielectrics 

have been co deposited with different metals to form Cermets films which were then applied 

in devices for conversion of solar energy. Extensive research on both dielectric-dielectric and 

metal - dielectric composite thin films has been done in the aspects of optical properties in 

the near infrared or solar regions [1-4].  

The most astonishing fact about the thin metallic films is that the metallic films show different 

optical properties from those of just the bulk metal. These films show very selective 

absorption and the optical properties strongly depend on the film structure, for example their 

thickness. The electron-microscopic results suggested that actual thin films are not parallel-  

sided homogeneous slabs, but they are films having some in-homogeneity like unevenness 

or some cracks or particles isolated from each other. The experimental results indicate that 

the very thin films of silver become in resonance absorption and have the peaks occur at about 

435µm or at still longer wavelength when the films are heated. The films consist of many 

small particles of silver [5]. Another result of the experiment indicated that thin metallic films 

could be considered as an aggregate of small rotational ellipsoids in two dimensions. 

Resonating of the free electron gas bound within an ellipsoid at some frequency depends on 

the shape of the ellipsoids [6]. These results reveal that the thin films of the materials have 

different optical properties or different optics of material due to thickness. The interaction of 

light or EMW with thin film material can be analyzed by studying the EMWs in thin film 

using MEs.  

EMW s in isotropic medium  

An isotropic material is that in which the optical properties are independent of the polarization 

state of an EMW when the EMW passes through the material [7]. Some constitutional 

relations for isotropic media hold true and the MEs can be solved easily.  

Fields and waves in isotropic medium  

The EF of the EMW interacting with an isotropic medium induces polarisation and it is the 

parallel component of the EF that determines the strength of the induced polarisation. From 

[8] it is demonstrated that the induced polarisation is proportional to the EF:  

   (2.5)  

Where ⃗p→= polarization, EF of wave, χ =electric susceptibility and ε0 =electric 

permittivity of free space.  

As we know, the constitutional relation for displaced EF and induced polarization and the 

relation are given by:  
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   (2.6)  

Where  dielectric displacement vector,  induced polarization,  EF of wave.  

On substituting polarization form Eq. (2.5) in Eq. (2.6), we get,  

  

  (2.7)  

(1+χ)εr, called relative permittivity of the material, then Eq. (2.7) becomes:  

 ⃗D→ = 𝜀0𝜀r⃗E→  (2.8)  

Generally, the optical constant of the material is given by:  

 εr=ε׳-iε(2.9)  ״  

where ε ׳ real electric permittivity and ε ״ imaginary electric permittivity.  

This relative electric permittivity is called the square optics of material or square of optical 

density or square refractive index. The optical density of the material is given by:  

 

 
 n= √𝜀r = √𝜀׳ − 𝜀(2.10)  ״ 

  

 

Figure 2.1: The EF , magnetic field intensity  and Poynting vector  in isotropic 

medium. 

The Figure 2.1 explains the direction of energy propagation with the coupling field waves.  

The local direction of 𝑆→ is also called the ray direction. Only for the wave front is the ray 

direction which is the same at all points on the phase fronts. The best way to understand the 

properties of an optical system is to find out when a ray of light enters in the medium. It is 

necessary to understand the direction of light as it encounters medium as well as the intensity 

of light when it crosses an interface [8].  

MEs for material  

The EMW propagation in a material medium is started by the four most fundamental equations 

of electrodynamics, which are known as the MEs:  

  (2.12)  

  

  (2.13)  

  

⃗A→ × ⃗E→ = − 6⃗B→  (2.14)   
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6𝑡  

                                              (2.15) 

⃗A→ × ⃗H→ = →J  

→  

                      6𝑡  

Where,  and  denotes electromagnetic field and EF, respectively. EMW field in the 

material is termed by these two fields  and B⃗→; where  shows the DD vector and ⃗B→ 

is the magnetic induction. These four field vectors are related with the constituent relations, 

which include the effect of the wave field on materials.  The quantities ρ and →J denotes 

density of electric charge and density of current associated with wave field generators  and ⃗

H→. Using these equations govern the EMW field in the medium. MEs cannot be derived 

exclusively unless the connection between  and  are known to get a unique 

purpose of the wave field vectors because these variable contains the eight scalar equations 

which relates to the twelve variables, three for each four vectors  and ⃗B→. The 

materials constituent equations are:  

 D→   (2.16)  

  

 ⃗ B→=μ⃗H→=μ0(H⃗→ + M⃗ →)=μ0(1+χm) H⃗→  (2.17)  

  

Here, ε  and μ  are tensors of rank two; P→⃗ and M→⃗ are electric and magnetic polarization 

respectively. When electrons, whose motion is not disturbed from 0 permittivity, are 

disturbed by electric wave field, electric dipole polarisation P per unit volume is created. 

Magnetic field also induces a magnetization M per unit volume in the materials where 

permeability is not exactly 0. For permeability, constant 0 is 4 x 107 H/m. Both the and 

tensors reduce to scalars in an isotropic or linear medium. We assume that the field forces 

have no effect on the amounts and. However, for the anisotropic medium, the dependency 

of quantities and on μ on  ⃗E→ and ⃗H→ must be on included for the sufficiently strong 

field.  

The MEs have coupled field wave equations. The Eq. (2.14) in the MEs for the isotropic 

medium is given below:  

  

⃗→  ⃗→ 6𝑡  6𝑡  

  

Now, we have considered that a plane wave of  and  is incident on the isotropic medium. 

The ⃗E→ (EF ) and the (magnetic field) a multiplication of a function of the angular form 

over time with a function of the location of the wave vector as:  

→(r,t) = ⃗E⃗⃗⃗0→e−i𝜔t+ik⃗→.⃗r and ⃗H→(r,t) = ⃗

H⃗⃗⃗0→e−i𝜔t+ik⃗→.r⃗ (2.19) Where  are the initial 

electric and magnetic fields.  

A ⃗ →   ×   ⃗  E →   =   −   
6 𝐵 =   − 𝜇   6 𝐻 
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Using Eq. (2.19), the derivatives of MEs become:  

  

6  ➀ −i𝜔  (2.20)  

  
                       6𝑡  

  

 and 6 ➀ i𝑘 A ➀ −i𝑘  (2.21) 

 
                      6𝑥  

Using Eq. (2.19), the Eq. (2.18) becomes:  

  

                                              (2.22)  

  

where μ = magnetic permeability, ω= frequency of time harmonic fields an μ=μ0(1 + χm). 

Similarly, from the MEs , the Eq. (2.15) takes the form:  

  →J +  (2.23) 

D→ 

 6   

              6t  

  

Using Eq. (2.19), the Eq. (2.23) becomes:  

  

                                              (2.24)  

where J = total current density and ε = ε0(1+χc).  

From MEs, the Eq. (2.12) gives the electric permittivity:  

  
Where, ρ = total charge density and ε = ε0(1+χc).  

Similarly, from Maxwell‘s equation, Eq.(2.17), the equation can be simplified:  

  (2.26)  

Where μ = μ0(1+χm) and ‖  

Calculation of optical properties of PC The two ways of solving the Maxwell‘s equation are 

(i) scalar form and (ii) vector form. According to the review of books and journals for the 

periodic structures/PC s, there are six main numerical methods used to simulate the periodic 

structures optical properties: (1) PWEM [14], (2) FDTD method [15], (3) FEM [16], (4) TMM 

[17], (5) RTSM [18] or a set of considered spheres [19] and (6) DGM [20]. Above methods are 

used to calculate with maximum efficiency for the optical property of PC. These methods give 

results with full accuracy and the good agreement with practical results. Tackling of problems 

through the different methods that are to be used by the PC s is known to be the one that leads 

the selection. The last part of the methods, such as PWEM, FDTD, FEM, TMM, all of these 
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have the advantage to model doped as well as undoped crystals [15–17] and 2D (2D) PC s are 

the parallel cylinder form while; 3D PC s are spherical form [18, 19]. Step (1), (4) and (6) are 

also valid for infinite crystals [15, 16, 20], whereas step (5) is specific to finite structures. 

Finally, using PWEM, FDTD, FEM, TMM, RTSM and DGM, the defect structures are 

analyzed using a super cell. Methods (2), (3) and (5) can however be used with a finite, structure 

with a single defect.  

Plane wave expansion method  

In order to determine the band structure of a periodic structure, PWEM is a simple and 

straightforward procedure. The imperfect infinite PC will be analysed as a super-cell. This 

technique is widely used for calculating several findings [21–23] while assessing the band 

structure of materials. The method's memory capacity is limited since it relies on a 

predetermined group of plane waves to grow the field. When the periodic structure of the PC 

is broken, this set grows in size.  

FDTD method   

This describes Maxwell’s equations in time domain. According to these findings, these systems 

[24–26] have very desirable behaviour in experimental settings. Sometimes, transmission ratio 

of optical materials is adopted to determine the electromagnetic mode of the defect mode in 

FEM. EMW pulse is incident to the material where the EMW signal is detected and the 

permeability of the periodic structure is calculated. FDTD technique may be used to model the 

crystals having either the internal or external EMW sources. For this reason, a complete 

practical setup with a periodic structure can be simulated using this method. This approach may 

be used to simulate the optical properties of the PC s. The main drawbacks of the FDTD are: 

(1) the treatment of certain materials, e.g., thin wires, is not accurate and (2) the size of memory 

needed to compute large crystals. This approach has many benefits, including the ability to 

accurately model anisotropic or non linear materials [16].  

Conclusion  

This paper presented the theoretical and mathematical basis for electromagnetic wave 

propagation in photonic crystal periodic structures, emphasizing one-dimensional layered 

systems. Starting from Maxwell’s equations and constitutive relations, optical density 

(refractive index) was established as a key macroscopic descriptor of light–matter interaction. 

By applying interface boundary conditions and periodicity principles, photonic band gaps 

emerge naturally as forbidden propagation regions arising from Bragg interference in 

refractive-index-modulated media. The master equation formulation provides an eigenvalue 

framework for deriving photonic band structures, while Bloch’s theorem explains the band 

formation within the first Brillouin zone. For 1-D photonic crystals, the transfer matrix method 

was highlighted as a practical and powerful approach for computing dispersion relations, 

reflectance, transmittance and defect-mode resonances under different incidence and 

polarization conditions. The discussion also connected isotropic modeling to anisotropic and 

composite media, where tensor permittivity and effective medium theory enable advanced 

regimes such as hyperbolic dispersion and tunable photonic behavior. Collectively, these 

https://ijarmt.com/


International Journal of Advanced Research and 

Multidisciplinary Trends (IJARMT) 
     An International Open Access, Peer-Reviewed Refereed Journal 

 Impact Factor: 6.4       Website: https://ijarmt.com          ISSN No.: 3048-9458 

 

Volume-2, Issue-2, April – June 2025                                                                                 1252        
 

formulations offer a robust foundation for designing and optimizing photonic devices including 

mirrors, filters, waveguides and high-sensitivity sensors.  
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