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Abstract
Photonic crystals (PCs) are periodic dielectric (and sometimes metal-dielectric or
metamaterialbased) structures that enable strong control over electromagnetic wave (EMW)
propagation through the formation of photonic band gaps (PBGs). The theoretical foundation
of PCs lies in Maxwell’s equations combined with appropriate constitutive relations and
boundary conditions at material interfaces. In this paper, we present a concise theory and
mathematical formulation for optical wave propagation in layered media with special emphasis
on one-dimensional (1-D) periodic structures. The refractive index (optical density) is
introduced as a key phenomenological parameter connecting macroscopic material response to
microscopic polarization mechanisms. For isotropic media, the electromagnetic fields satisfy
decoupled Helmholtz-type wave equations, while for nonuniform periodic media the fields
obey a master equation that leads to Bloch-mode solutions and dispersion relations within the
first Brillouin zone. The transfer matrix method (TMM) is described as an efficient technique
for evaluating band structure, reflectance, transmittance and defect-mode behavior in 1-D
photonic crystals. The formulation is extended conceptually to anisotropic and composite
media where permittivity and permeability may become tensor quantities, enabling hyperbolic
dispersion and tunable optical responses. This theory provides a rigorous basis for designing
photonic devices such as filters, mirrors, sensors and waveguiding structures across optical and
terahertz regimes.
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Introduction
The propagation of electromagnetic waves in material media is governed by the interaction of
electric and magnetic fields with the charged constituents of matter. This interaction is central
to optics and photonics, where the goal is not only to understand light—matter behavior but also
to engineer materials and structures capable of controlling light in a predictable and efficient
way. Among such engineered media, photonic crystals (PCs) have emerged as a fundamental
class of periodic optical materials that can manipulate the flow of electromagnetic energy in
close analogy to how crystalline solids control electron motion through electronic band
structures. The defining feature of photonic crystals is the periodic modulation of refractive
index (or equivalently, dielectric permittivity), which leads to photonic band structures and the
formation of forbidden frequency ranges called photonic band gaps (PBGs). Within these gaps,
wave propagation is suppressed, enabling applications including highly reflecting mirrors,
narrowband filters, resonant cavities, waveguides and biosensors.
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A key step in modeling photonic crystal behavior is the use of macroscopic optical parameters
such as refractive index, dielectric constant, susceptibility and conductivity to describe
complex microscopic interactions in an averaged form. In most optical systems of interest, the
wavelength of light is much larger than the interatomic spacing, which justifies the continuum
approximation. Under this assumption, the material response can be expressed through
constitutive relations that connect electric displacement D\mathbf{D}D to electric field
E\mathbf{E}E and magnetic induction B\mathbf{B}B to magnetic field intensity
H\mathbf{H}H. For linear, homogeneous media, these relations are commonly written as
D=¢E\mathbf{D}=\varepsilon \mathbf{E} D=¢E and B=pH\mathbf{B}=\mu
\mathbf{H}B=uH, where e\varepsilone and p\mup represent permittivity and permeability,
respectively. In optical frequency regimes, the polarization response of electrons particularly
bound and conduction electrons dominates and absorption can be represented through complex
permittivity (or a complex refractive index) whose imaginary part accounts for attenuation. The
refractive index nnn, also called optical density in many contexts, is a central quantity because
it directly determines phase velocity and wave propagation in a medium. For non-magnetic
media, the refractive index is largely governed by permittivity, while in general form it satisfies
n2=grurn”2=\varepsilon_r \mu_rn2=erpr, where er\varepsilon_rer and pr\mu_rur are relative
permittivity and relative permeability. This relation highlights why engineered materials such
as metamaterials can support unusual propagation regimes when g\varepsilone and p\mup are
tailored. In particular, materials with positive refractive index (PIMs) behave conventionally,
whereas negative-index materials (NIMs) can exhibit reversed refraction, backward-wave
propagation and non-intuitive phase—energy relationships. The connection between refractive
index and wave vector is expressed through
k=(nw/c)kmathbf{k}=(n\omega/c)\hat {k } k=(nw/c)k”, showing that both wavelength and
phase accumulation depend on the optical density and operating frequency. Wave behavior at
interfaces is equally important because photonic crystals consist of repeated interfaces between
materials of different refractive indices. Boundary conditions derived from Maxwell’s
equations enforce continuity of tangential components of E\mathbf{E}E and H\mathbf{H}H
across interfaces (with corresponding conditions on D\mathbf{D}D and B\mathbf{B}B
depending on charge and current distributions). These conditions lead to reflection and
transmission at each layer boundary. In a periodic multilayer system, multiple reflections
interfere constructively and destructively depending on optical path lengths, incidence angles,
polarization (TE/TM) and refractive index contrast. When the periodicity is comparable to the
wavelength, Bragg scattering becomes significant and produces photonic band gaps frequency
regions in which propagating solutions are not allowed and the fields become evanescent.

For isotropic media, Maxwell’s equations can be combined to yield decoupled wave equations
often written in Helmholtz form for either electric or magnetic fields. However, in periodic
media, permittivity varies spatially and the resulting wave equation becomes an eigenvalue
problem. A widely used formulation is the “master equation” for photonic crystals, typically
expressed in vector form for the magnetic field:
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Because the medium is periodic, Bloch’s theorem applies: electromagnetic modes take the form
of Bloch waves characterized by a wave vector within the first Brillouin zone and
eigenfrequencies form bands on(k)\omega n(\mathbf{k})wn(k). The resulting dispersion
relations reveal allowed photonic bands and forbidden gaps, providing the conceptual and
computational basis for designing photonic devices. For one-dimensional photonic crystals,
where periodicity exists along a single axis, the transfer matrix method (TMM) offers an
efficient way to compute band structure and spectral properties. In TMM, each layer is
represented by a characteristic matrix connecting field amplitudes at one boundary to those at
the next. Multiplying matrices across a unit cell yields a total transfer matrix from which Bloch
wave number, reflectance, transmittance and defect-state resonances can be derived.
Importantly, TMM accommodates oblique incidence and polarization dependence, making it
suitable for real device modeling. Beyond isotropic media, many modern structures employ
anisotropic, lossy, plasmabased, superconducting, or hyperbolic composite layers, where
permittivity (and sometimes permeability) must be treated as tensors. In such cases, dispersion
surfaces may become hyperbolic and support high-kkk modes, enabling extreme confinement
and tunability. Effective medium theory further provides approximate analytical expressions
for composite permittivity in multilayer metal—dielectric systems, linking optical response to
filling fraction and constituent parameters. Overall, the theory and mathematical formulation
of photonic crystals unite electromagnetic fundamentals with periodic-structure physics. This
framework enables systematic prediction of band gaps, field localization and spectral
signatures and it supports a wide range of applications from filtering and sensing to integrated
photonic circuitry.

Isotropic and anisotropic medium

It was also seen earlier that the optical density of the material is in dependence on two
physical properties of the materials; i.e, electric permittivity and magnetic permeability.
When EMWs are interacted with these materials, such interaction is related to these
parameters with the polarizations of material. Nevertheless, € or p is tensor quantity.
Therefore, the materials are two types: (i) isotropic material when € and p are independent of
direction whereas (ii) anisotropic material when € and p is direction dependent. The isotropic
and anisotropic materials follow cubic symmetry mechanism and inhomogeneous medium
follow composite asymmetry, respectively. It has been observed from the time of Maxwell
that transport properties of randomly inhomogeneous materials have been of great intrigue to
the researchers. In the today ‘s world of science and technology, novel materials practicing
the novel material demand of high-speed information are characterized with unique optical
properties which the already existing materials can not possess. The scientists always manage
to exhaust the amount of research on manufacturing or developing materials with such unique
properties or modify the available materials and the present materials are fabricated by the
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available technique, e.g. the preparation of thin films in nanoscience and nanotechnology and
S0 on.
It is to state of the several approaches that provide the best optical properties of materials
called composite materials, the properties of composite thin films are usually changed in a
more convenient way and thus it is easy to implement. Evaporation, sputtering and ion beams
assisted depositions are also the techniques of modification or deposition of thin films which
have been proven to be quite successful in preparing composite or inhomogeneous or
anisotropic dielectric thin films. It is demonstrated that the manufacturing of thin films using
the above techniques is helpful in the fabrications of optical thin film devices. Dielectrics
have been co _deposited with different metals to form Cermets films which were then applied
in devices for conversion of solar energy. Extensive research on both dielectric-dielectric and
metal - dielectric composite thin films has been done in the aspects of optical properties in
the near infrared or solar regions [1-4].
The most astonishing fact about the thin metallic films is that the metallic films show different
optical properties from those of just the bulk metal. These films show very selective
absorption and the optical properties strongly depend on the film structure, for example their
thickness. The electron-microscopic results suggested that actual thin films are not parallel-
sided homogeneous slabs, but they are films having some in-homogeneity like unevenness
or some cracks or particles isolated from each other. The experimental results indicate that
the very thin films of silver become in resonance absorption and have the peaks occur at about
435um or at still longer wavelength when the films are heated. The films consist of many
small particles of silver [5]. Another result of the experiment indicated that thin metallic films
could be considered as an aggregate of small rotational ellipsoids in two dimensions.
Resonating of the free electron gas bound within an ellipsoid at some frequency depends on
the shape of the ellipsoids [6]. These results reveal that the thin films of the materials have
different optical properties or different optics of material due to thickness. The interaction of
light or EMW with thin film material can be analyzed by studying the EMWs in thin film
using MEs.
EMW s in isotropic medium
An isotropic material is that in which the optical properties are independent of the polarization
state of an EMW when the EMW passes through the material [7]. Some constitutional
relations for isotropic media hold true and the MEs can be solved easily.
Fields and waves in isotropic medium
The EF of the EMW interacting with an isotropic medium induces polarisation and it is the
parallel component of the EF that determines the strength of the induced polarisation. From
[8] it is demonstrated that the induced polarisation is proportional to the EF:
b = €03E (2.5)

Where “p—= polarization,E =EF of wave, x =electric susceptibility and & =electric

permittivity of free space.

As we know, the constitutional relation for displaced EF and induced polarization and the

relation are given by:
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D=¢gFE+P (2.6)
WhereD = dielectric displacement vector,P = induced polarization, E = EF of wave.
On substituting polarization form Eq. (2.5) in Eq. (2.6), we get,

D= go(l + 3)@ (2.7)
(1+y)er, called relative permittivity of the material, then Eq. (2.7) becomes:
"D— = go&r E— (2.8)
Generally, the optical constant of the material is given by:
er=¢'-ig" (2.9)

where ¢’ real electric permittivity and € ” imaginary electric permittivity.
This relative electric permittivity is called the square optics of material or square of optical
density or square refractive index. The optical density of the material is given by:

n= \/s_r= Ve — g (2.10)
E
T I_—i > » »
/ S = ExH
S -3
Figure 2.1: The EF (B), magnetic field intensity (H) and Poynting vector (5) in isotropic
medium.

The Figure 2.1 explains the direction of energy propagation with the coupling field waves.
The local direction of S— is also called the ray direction. Only for the wave front is the ray
direction which is the same at all points on the phase fronts. The best way to understand the
properties of an optical system is to find out when a ray of light enters in the medium. It is
necessary to understand the direction of light as it encounters medium as well as the intensity
of light when it crosses an interface [8].

MEs for material

The EMW propagation in a material medium is started by the four most fundamental equations

of electrodynamics, which are known as the MEs:

AD=p (2.12)
AB=0 (2.13)
"A— xE>=-6B— (2.14)
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6t
(2.15)
"A— x "H— =—-J]
6D—
6t

Where, E and [ denotes electromagnetic field and EF, respectively. EMW field in the
material is termed by these two fields [> and B°—; where [ shows the DD vector and “B—
is the magnetic induction. These four field vectors are related with the constituent relations,
which include the effect of the wave field on materials. The quantities p and —J denotes
density of electric charge and density of current associated with wave field generatorsE and
H—. Using these equations govern the EMW field in the medium. MEs cannot be derived
exclusively unless the connection between B & 1 and E & D are known to get a unique
purpose of the wave field vectors because these variable contains the elght scalar equations

which relates to the twelve variables, three for each four vectors E, H, D and “B—. The
materials constituent equations are:

D— = 0B +P=gy(1+y)E=¢E (2.16)
"Bo=p " Ho=po(H'— + M” —)=po(l+ym) H—  (2.17)

Here, ¢ and p are tensors of rank two; P—~ and M—" are electric and magnetic polarization
respectively. When electrons, whose motion is not disturbed from O permittivity, are
disturbed by electric wave field, electric dipole polarisation P per unit volume is created.
Magnetic field also induces a magnetization M per unit volume in the materials where
permeability is not exactly 0. For permeability, constant 0 is 4 x 107 H/m. Both the and
tensors reduce to scalars in an isotropic or linear medium. We assume that the field forces
have no effect on the amounts and. However, for the anisotropic medium, the dependency
of quantities and on p on "E— and "H— must be on included for the sufficiently strong
field.

The MEs have coupled field wave equations. The Eq. (2.14) in the MEs for the isotropic

medium is given below:

AxB=_tr = _pfus "— 6t 6t

Now, we have considered that a plane wave of £ andB is incident on the isotropic medium.
The "E— (EF ) and the [¥(magnetic field) a multiplication of a function of the angular form
over time with a function of the location of the wave vector as:
—(rt) = ET0—e T and "Ho(rt) =
H™0—e "ok =1 (2 19) Where Eg and Ho' are the initial
electric and magnetic fields.
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Using Eq. (2.19), the derivatives of MEs become:

6 @ —iw (2.20)
6t
and ® @ ik A @ —ik (2.21)
6x N

Using Eq. (2.19), the Eq. (2.18) becomes:
AxE=-imB = —imui-i‘ (2.22)

where © = magnetic permeability, o= frequency of time harmonic fields an p=po(1 + ym).
Similarly, from the MEs , the Eq. (2.15) takes the form:
kxh =
5 —J + (2.23)
D—
6

6t
Using Eq. (2.19), the Eqg. (2.23) becomes:

A xH=19—imE (2.24)

where J = total current density and € = go(1+yc).
From MEs, the Eq. (2.12) gives the electric permittivity:

xB=P

s
Where, p = total charge density and € = go(1+yc).
Similarly, from Maxwell‘s equation, Eq.(2.17), the equation can be simplified:
AB=A& (uH)=0 (2.26)

Where p = po(1+ym) andB = nH
Calculation of optical properties of PC The two ways of solving the Maxwell‘s equation are
(i) scalar form and (ii) vector form. According to the review of books and journals for the
periodic structures/PC s, there are six main numerical methods used to simulate the periodic
structures optical properties: (1) PWEM [14], (2) FDTD method [15], (3) FEM [16], (4) TMM
[17], (5) RTSM [18] or a set of considered spheres [19] and (6) DGM [20]. Above methods are
used to calculate with maximum efficiency for the optical property of PC. These methods give
results with full accuracy and the good agreement with practical results. Tackling of problems
through the different methods that are to be used by the PC s is known to be the one that leads

the selection. The last part of the methods, such as PWEM, FDTD, FEM, TMM, all of these
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have the advantage to model doped as well as undoped crystals [15-17] and 2D (2D) PC s are
the parallel cylinder form while; 3D PC s are spherical form [18, 19]. Step (1), (4) and (6) are
also valid for infinite crystals [15, 16, 20], whereas step (5) is specific to finite structures.
Finally, using PWEM, FDTD, FEM, TMM, RTSM and DGM, the defect structures are
analyzed using a super cell. Methods (2), (3) and (5) can however be used with a finite, structure
with a single defect.

Plane wave expansion method

In order to determine the band structure of a periodic structure, PWEM is a simple and
straightforward procedure. The imperfect infinite PC will be analysed as a super-cell. This
technique is widely used for calculating several findings [21-23] while assessing the band
structure of materials. The method's memory capacity is limited since it relies on a
predetermined group of plane waves to grow the field. When the periodic structure of the PC
is broken, this set grows in size.

FDTD method

This describes Maxwell’s equations in time domain. According to these findings, these systems
[24-26] have very desirable behaviour in experimental settings. Sometimes, transmission ratio
of optical materials is adopted to determine the electromagnetic mode of the defect mode in
FEM. EMW pulse is incident to the material where the EMW signal is detected and the
permeability of the periodic structure is calculated. FDTD technique may be used to model the
crystals having either the internal or external EMW sources. For this reason, a complete
practical setup with a periodic structure can be simulated using this method. This approach may
be used to simulate the optical properties of the PC s. The main drawbacks of the FDTD are:
(1) the treatment of certain materials, e.g., thin wires, is not accurate and (2) the size of memory
needed to compute large crystals. This approach has many benefits, including the ability to
accurately model anisotropic or non linear materials [16].

Conclusion

This paper presented the theoretical and mathematical basis for electromagnetic wave
propagation in photonic crystal periodic structures, emphasizing one-dimensional layered
systems. Starting from Maxwell’s equations and constitutive relations, optical density
(refractive index) was established as a key macroscopic descriptor of light—matter interaction.
By applying interface boundary conditions and periodicity principles, photonic band gaps
emerge naturally as forbidden propagation regions arising from Bragg interference in
refractive-index-modulated media. The master equation formulation provides an eigenvalue
framework for deriving photonic band structures, while Bloch’s theorem explains the band
formation within the first Brillouin zone. For 1-D photonic crystals, the transfer matrix method
was highlighted as a practical and powerful approach for computing dispersion relations,
reflectance, transmittance and defect-mode resonances under different incidence and
polarization conditions. The discussion also connected isotropic modeling to anisotropic and
composite media, where tensor permittivity and effective medium theory enable advanced
regimes such as hyperbolic dispersion and tunable photonic behavior. Collectively, these
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formulations offer a robust foundation for designing and optimizing photonic devices including
mirrors, filters, waveguides and high-sensitivity sensors.
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