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Abstract
Archaeological work in Bengal has produced rich descriptions of stone, ceramic and metal
technologies from the Lower Palaeolithic to the Early Iron Age, yet these technologies are usually
compared qualitatively rather than measured against a common scale of complexity. This paper
adapts the Petri net-based technological complexity framework proposed by Fajardo, Kozowyk and
Langejans (2023) to a set of reconstructed chaines opératoires from Bengal and eastern India. Five
representative workflows are modelled: core-and-flake handaxe production, Late Pleistocene
microlithic bladelet production, Neolithic/Neo-Chalcolithic ground-stone axe manufacture,

Chalcolithic copper ornament casting, and Early Iron Age bloomery iron smelting and forging.
Each sequence is encoded as a Petri net and evaluated using three complexity dimensions defined
by Fajardo et al.: structural complexity, behavioural complexity and information complexity.
Results show a clear ordinal increase in technological complexity from early lithic reduction to iron
smelting, with microliths and ground-stone axes occupying intermediate positions. Technologies
associated with larger, more permanent settlements and stronger evidence for craft specialisation
tend to exhibit higher complexity scores. The study demonstrates that Petri net—based metrics can
be meaningfully applied to South Asian archaeological datasets, providing a quantitative basis for
linking technological complexity with cognitive demands and socio-economic organisation in
Bengal’s long-term history.

Keywords: technological complexity; Petri nets; chaine opératoire; ancient Bengal; iron smelting;
microliths; craft specialisation

1. Introduction

1.1 Background

The idea that technological complexity is tied to cognition and social organisation has become
increasingly prominent in archaeology and evolutionary anthropology. Complex technologies
demand planning, coordination and the management of extended sequences of actions, and can
therefore be used as indirect evidence for changes in cognitive capacities and social arrangements
(Shennan, 2008; Stout, 2011). At the same time, technologies are embedded in social and economic
systems: more complex production sequences often appear alongside larger, more settled
communities, emerging craft specialisation and widening exchange networks (Richerson & Boyd,
2005; Killick & Fenn, 2012).

In South Asia, and particularly in Bengal and eastern India, the technological record is rich but
unevenly quantified. Scholars have documented long sequences from core-and-flake Palaeolithic
industries through Late Pleistocene microliths, mixed stone—metal Neolithic and Chalcolithic
toolkits, and Early Iron Age bloomery smelting (Chakrabarti, 1993; Datta, 1981, 2010; Basak &
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Srivastava, 2017; Ray & Mondal, 2013). These technologies are usually described in terms of raw
materials, tool types and broad production stages. Terms such as “simple,” “elaborate” or
“advanced” are used freely, but there is rarely an explicit, comparative metric of complexity.

Recent methodological advances offer a way to move beyond impressionistic labels. Fajardo,
Kozowyk and Langejans (2023) have proposed a formal way to measure technological complexity
using Petri nets, a class of graphical models widely used in computer science to represent processes
with states, transitions and flows. In their study of ancient adhesives and other technologies, Petri
nets are used to encode production sequences, and complexity is quantified through three metrics:
structural complexity (the size and connectivity of the network), behavioural complexity (the
diversity and concurrency of possible execution paths), and information complexity (an
information-theoretic measure of uncertainty in the process).

1.2 Research problem and aim

The archaeological literature on Bengal contains detailed qualitative reconstructions of different
technological systems, but these have not been brought together using a common quantitative
framework. As a result, it is hard to evaluate claims such as “iron technology is more complex than
microlithic technology” in anything other than intuitive terms. The absence of such a framework
limits our ability to test whether technological complexity actually tracks major socio-economic
shifts, such as the move from mobile foraging to agriculture, or the emergence of more permanent
settlements and craft specialists.

The aim of this paper is to make a first step toward filling this gap. It applies the Petri net-based
technological complexity metrics developed by Fajardo et al. (2023) to a set of reconstructed
chaines opératoires representing key technologies in Bengal and adjacent eastern India. Rather than
attempting exhaustive modelling, the study focuses on a small, carefully chosen sample of
production sequences that span major chronological and technological thresholds.

1.3 Research questions and hypotheses

Two main research questions guide the analysis:

e RQ1: Does technological complexity, as measured through Petri net metrics, increase from
Palaeolithic/Mesolithic stone technologies to Chalcolithic and Early Iron Age metal
technologies in Bengal?

e RQ2: Is higher technological complexity associated with archaeological contexts that show
stronger indications of settlement hierarchies and craft specialisation?

From these, two working hypotheses are derived:

e HI1: Mean complexity scores will be lowest for core-and-flake lithic sequences,
intermediate for microlithic bladelet production and ground-stone axes, and highest for
bloomery iron smelting workflows.

e H2: Technologies used in contexts with larger, more permanent settlements and
archaeometallurgical workshops will show higher complexity scores than those associated
with small camps and low levels of specialisation.

The paper proceeds by outlining the Bengal dataset and modelling approach (Section 2), presenting
the empirical results (Section 3), and discussing their implications for technology, cognition and
socio-economic change (Section 4). The conclusion highlights methodological contributions and
directions for further work.
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2. Materials and Methods

2.1 Selection of technologies and production sequences

To keep the exercise focussed yet representative, five technologies were selected that together span
the main pre- and protohistoric phases discussed in the associated thesis:

1. Core-and-flake handaxe production in Lower Palaeolithic contexts on lateritic surfaces in
Bankura, Midnapore and neighbouring districts (Ghosh, 1961, 1966; Chakrabarti &
Chattopadhyay, 1984; Misra, 2001).

2. Microlithic bladelet production in Late Pleistocene contexts at Mahadebbera and Kana in
Purulia, where stratified microlithic levels dated between c. 42-25 ka BP have been
reported (Basak et al., 2014; Basak & Srivastava, 2017).

3. Ground-stone axe production in Neolithic/Neo-Chalcolithic contexts of eastern India,
with particular reference to upland sites at the hill margins and in the lateritic belt, where
ground axes and adzes appear alongside pottery and early agriculture (Datta & Sanyal,
2013).

4. Copper ornament production in Chalcolithic contexts, especially at Pandu Rajar Dhibi
and related sites in the Ajay—-Damodar valleys, where rings, bangles and other ornaments
have been recovered with evidence for casting and finishing (Datta, 1981, 2004—2005; Ray,
1991).

5. Bloomery iron smelting and forging in Early Iron Age and early historic contexts in
western West Bengal and the eastern fringes of the Chotanagpur plateau, documented
through slag, furnace remains and iron tools (Chattopadhyay, 1991; Acharya, 2006; Datta,
2010; Ray & Mondal, 2013).

Each technology is represented by an idealised chaine opératoire reconstructed from the thesis
database and published descriptions, supplemented where needed by comparative experimental and
ethnographic work (Hegde, 1991; Rice, 1987; Killick & Fenn, 2012). The goal is not to model
every local variant, but to encode a plausible, internally consistent workflow for each class.

2.2 Data sources

For each technology, the reconstruction of production steps draws on a combination of:

o Archaeological reports describing artefact assemblages, production waste and features
such as furnaces or working floors (e.g., Basak et al., 2014; Datta, 1981, 2010;
Chattopadhyay, 1991).

o Regional syntheses for environmental and settlement context (Chakrabarti, 1993; Ghosh &
Majumdar, 1991).

e Methodological literature on lithic, ceramic and metallurgical technologies, which
provides generic sequences and technical constraints (Andrefsky, 2005; Rice, 1987; Killick
& Fenn, 2012).

Production sequences are formulated at a “meso-scale”: individual actions such as “strike with
hammerstone” are grouped into broader steps like “primary flaking” or “bladelet removal,” to keep
Petri nets manageable and comparable across domains.
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2.3 Petri net modelling and complexity metrics
Petri nets are bipartite directed graphs composed of places (circles), transitions (rectangles) and
arcs connecting them (Fajardo et al., 2023). Places represent states, resources or intermediate
products (e.g., “unworked ore,” “
(e.g., “smelt,” “hammer to shape”). Tokens move through the net according to firing rules,
capturing the flow of materials and actions.
Following Fajardo et al. (2023), each reconstructed chaine opératoire is translated into a Petri net
by:

1. Identifying distinct states and sub-products (raw materials, intermediate forms, tools,

waste).
2. Defining transitions corresponding to major processing steps.

charged furnace”), while transitions represent events or operations

3. Connecting places and transitions with arcs to represent the logical and material
dependencies of the workflow.

Once the Petri net is specified, three complexity metrics are considered, closely following the
definitions in Fajardo et al. (2023):

1. Structural complexity, which captures the size and connectivity of the network. It is
operationalised through a combined index based on the number of places, number of
transitions and normalised density of arcs. Larger, more densely connected nets are
structurally more complex.

2. Behavioural complexity, which reflects the variety of possible execution paths and the
presence of concurrency or alternative branches. This is approximated through counts of
decision points, loops and parallel structures, following the behavioural analysis of Petri
nets used in process mining (Fajardo et al., 2023).

3. Information complexity, which approximates the uncertainty and information load of the
workflow. It is derived in an ordinal way from the number of alternative choices and the
variety of inputs and outputs at each transition, inspired by the information-theoretic
measure used by Fajardo et al. (2023).

Because the aim here is exploratory rather than strictly statistical, complexity values are interpreted
as ordinal categories (low, medium, high) based on the relative positions of the five technologies
once encoded, rather than as precise numerical scores. This keeps the analysis transparent and
avoids over-interpreting a small sample of stylised models.

2.4 Coding procedure and reliability

Each chaine opératoire was first drafted as a textual flowchart and then encoded as a Petri net
diagram. To check consistency, the five workflows were independently coded twice at different
times by the author, using the same written descriptions and criteria. Differences in the placement
or grouping of steps were resolved by re-examining the archaeological and experimental sources
until a single agreed version was reached.

Given the small number of technologies and the integrative nature of the modelling, a formal inter-
coder reliability statistic such as Cohen’s kappa was not calculated. Instead, reliability is addressed
through transparency of assumptions and by reporting only broad ordinal categories of complexity.
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2.5 Contextual variables
To link technological complexity to broader socio-economic patterns, three contextual variables
were assigned to each technology, based on the synthesis of settlement, craft and exchange
evidence in the thesis and in published literature (Chakrabarti, 1993; Datta, 2010; Ray & Mondal,

2013):
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Settlement scale, scored qualitatively as 1 (small camp or temporary site), 2 (village-sized,
semi-permanent settlement), or 3 (large village/proto-urban centre).
Craft specialisation, scored as low, medium or high, depending on indications of dedicated

production areas, standardisation and integration into wider exchange networks.

Exchange involvement, scored as low, medium or high, based on evidence for imported
raw materials or products, and connections to broader regional networks.

scores are necessarily approximate, but they capture broad differences between highly
mobile hunter-gatherer camps and more settled Chalcolithic or Early Iron Age communities with
organised metallurgical production.
Table 1 summarises the technologies and associated analytical variables.

Table 1
Technologies and analytical variables used in the Petri net study
Cod | Technolog | Broad phase | Main context | Settlemen | Craft Exchange
e y / (site / region) t scale* specialisatio | involvemen
sequence n t
Tl Core-and- | Lower Lateritic surfaces, | 1 (camp) | Low Low
flake Palaeolithic Bankura/Midnapo
handaxe re (eastern India)
and cleaver
production
T2 Microlithic | Late Mahadebbera and | 1-2 Low- Low-
bladelet Pleistocene Kana, Purulia medium medium
production | (microlithic)
T3 Ground- Neolithic/Ne | Eastern India hill | 2 (village) | Medium Medium
stone axe | o- margins and
(axe/adze) | Chalcolithic | lateritic belt
production
T4 Copper Chalcolithic | Pandu Rajar Dhibi | 2-3 Medium-— Medium—
ornament and related Ajay- high high
casting and Damodar  valley
finishing sites
T5 Bloomery | Early Iron | Western fringe of | 3 (proto- | High High
iron Agelearly Bengal, urban)
smelting historic Chotanagpur
and forging plateau edge
of tools
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*Scale: 1 = small camp, 2 = village, 3 = large village/proto-urban.
2.6 Data analysis
For each technology, the Petri net was examined to determine:

e The relative structural complexity (small/linear vs large/branched networks).

e The relative behavioural complexity (few vs many alternative paths and concurrent

activities).
e The relative information complexity (few vs many decision points and distinct
inputs/outputs).

These were then coded as low, medium or high for each dimension. Given the extremely small
sample (five technologies), formal inferential statistics are not appropriate. Instead, the analysis
looks for consistent gradients in complexity scores from T1 to TS5, and for simple associations
between higher complexity categories and higher contextual scores in settlement scale and craft
specialisation.
3. Results
3.1 Descriptive patterns of technological complexity
Encoding the five chaines opératoires as Petri nets confirmed substantial differences in their
structure and behaviour. The Lower Palaeolithic core-and-flake sequence (T1) could be represented
with a relatively small number of places and transitions arranged in a largely linear pattern: raw
nodule selection, primary flaking, shaping, edge maintenance and discard. Feedback loops (e.g., re-
sharpening) exist but are limited, and most actions occur sequentially with little concurrency.
In contrast, the iron smelting and forging workflow (T5) required many more places and
transitions. Distinct stages involve ore procurement and preparation, charcoal production, furnace
construction and maintenance, charging and smelting, bloom consolidation, primary forging and
secondary tool finishing. Several of these stages can occur in parallel, and branching is present
where different furnace charges or forging paths are possible (Hegde, 1991; Acharya, 2006; Datta,
2010).
Intermediate technologies fall between these extremes. Microlithic bladelet production (T2) shows
a clear modular structure with repeated cycles of core preparation and bladelet removal, and a
distinct stage for backing or shaping inserts (Basak et al., 2014). Ground-stone axe production (T3)
introduces long grinding and polishing stages, which require sustained access to water and abrasive
materials (Datta & Sanyal, 2013). Copper ornament production (T4) adds casting and finishing
steps, including the preparation of moulds, control of melting and cooling, and post-casting
working (Ray, 1991).
Table 2 summarises the resulting ordinal complexity scores.

Table 2
Relative technological complexity scores by technology class
Code | Technology / sequence Structural Behavioural Information
complexity complexity complexity
Tl Core-and-flake  handaxe | Low Low Low
production
T2 Microlithic bladelet | Medium Medium Medium
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production

T3 Ground-stone axe | Medium Medium Medium
production

T4 Copper ornament casting | Medium-high High High
and finishing

T5 Bloomery iron smelting | High High High
and forging

In line with H1, there is a clear monotonic gradient: early lithic technology is consistently low in all
three complexity dimensions, microlithic and ground-stone technologies occupy intermediate
positions, and metal-working technologies, especially iron smelting, lie at the upper end.

It is notable that microlithic and ground-stone axe production share similar complexity categories.
Although they work with different materials, both involve a greater number of structured steps and
longer production sequences than early core-and-flake industries.

3.2 Complexity and contextual variables

A simple comparison between Table 1 and Table 2 suggests that higher technological complexity
tends to align with higher scores for settlement scale and craft specialisation. T1, representing
Lower Palaeolithic core-and-flake technology, is associated with small camps and little evidence
for specialised production (Ghosh, 1961; Misra, 2001) and has uniformly low complexity scores.
T2 and T3, the microlithic and ground-stone technologies, are linked to camp-to-village situations
with limited but emerging specialisation (Basak & Srivastava, 2017; Datta & Sanyal, 2013). Their
complexity scores are consistently medium. By the time we reach copper ornament production at
Pandu Rajar Dhibi (T4) and iron smelting (T5), settlement size and craft specialisation scores have
increased, and so have all three complexity dimensions (Datta, 1981, 2010; Acharya, 2006; Ray &
Mondal, 2013).

Although the sample size precludes formal statistical testing, the qualitative pattern supports H2:
more complex technologies, as captured by the Petri net—derived indices, tend to occur in contexts
where archaeological indicators of social and economic complexity are also stronger.

3.3 Visual contrast between simple and complex workflows

Comparing the Petri nets for T1 and TS highlights the intuitive meaning of the complexity gradient.
The core-and-flake net consists of a short sequence of places and transitions with one main line of
flow and a few minor loops. In contrast, the iron smelting net includes multiple sub-networks: a
charcoal-making loop, a furnace-building and drying circuit, branching paths for different ore
batches, and sequential forging and finishing stages. Tokens move in parallel through some of these
structures, and the number of points at which choices must be made is visibly higher.

This visual difference matches the ordinal complexity scores and helps to communicate the idea
that complexity is not only a matter of more steps, but also of more interdependence, concurrency
and decision-rich branching.
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4. Discussion

4.1 Interpreting the complexity gradient

The ordinal gradient in Table 2 is consistent with long-standing expectations that metal
technologies, especially bloomery iron smelting, are procedurally more complex than basic
knapping. Iron smelting requires the coordination of more resources (ore, fuel, clay), more stages of
preparation, and more precise control of invisible parameters such as furnace temperature and
atmosphere (Killick & Fenn, 2012; Hegde, 1991). The Petri net models capture this through larger,
more interconnected networks with more branching and parallelism.

From an evolutionary perspective, the gradient can be read as a history of increasing planning
depth and organisational demand. Shennan (2008) argues that technologies can be seen as
cultural traits that vary in complexity, cost and benefit, and that more complex traits require more
robust systems of social learning to be maintained. The Petri net results are in line with this view:
the move from simple core-and-flake sequences to iron smelting implies not only more steps, but
also more dependencies between those steps, and thus more opportunities for failure if knowledge
is not transmitted accurately.

At the same time, the results remind us that even “simple” technologies have non-trivial
complexity. Microlithic and ground-stone axe production both register as medium complexity.
Bladelet production at Mahadebbera and Kana, for example, involves structured sequences of core
preparation, systematic blank removal and backing (Basak et al., 2014). Ground-stone axes require
extended grinding and polishing, which in practice means repeated, labour-intensive cycles of work
and targeted access to water and abrasives (Datta & Sanyal, 2013). These are not trivial procedures
and would have required social mechanisms for teaching and apprenticeship.

4.2 Technology, cognition and practice

One of the motivations for using explicit complexity metrics is to connect archaeological
technologies to debates about cognition and material engagement. Stout (2011) and Stout and
Chaminade (2012) have shown that learning to produce Acheulean handaxes activates brain areas
associated with motor control, planning and language, and that more complex knapping tasks
involve more sustained cognitive control. Malafouris (2013) argues more broadly that tools and
artefacts act as “thinking devices” that extend and structure cognitive processes.

In this light, the Bengal sequences modelled here can be seen as different forms of externalised
cognitive scaffolding. A core-and-flake sequence with low complexity requires the maker to track
fewer dependencies, but still demands a sense of stone properties and flaking angles. Microlithic
bladelet production and ground-stone axes introduce more extended planning: cores must be
organised for repeated removals, and grinding sequences stretch over long periods and involve
managing effort and time.

Metal technologies, particularly bloomery iron smelting, increase the cognitive load further.
Smelting requires operators to manage delayed feedback: the success or failure of the process may
only become evident when the furnace is tapped or the bloom is retrieved. This demands reliance
on indirect cues, such as colour, sound and airflow, and on shared procedural knowledge
transmitted over generations (Hegde, 1991; Killick & Fenn, 2012). The high behavioural and
information complexity scores in T4 and TS5 reflect these demands.
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The Petri net metrics do not measure cognition directly, but they provide a structured way of
expressing the minimum organisational complexity that any cognitive system must handle to
execute the workflow. This opens the door for more explicit dialogue between South Asian
archaeologists and cognitive archaeology.

4.3 Technology and socio-economic change in Bengal

The alignment between higher technological complexity and archaeological indicators of settlement
scale and craft specialisation supports long-standing arguments that technological and socio-
economic changes in Bengal were intertwined. Datta (2010) has shown that the expansion of iron
technology in eastern India was closely linked to agricultural intensification, forest clearance and
the growth of early historic centres. Ray and Mondal (2013) emphasise that iron production in the
region involved organised smelting sites, specialised labour and integration into wider networks of
demand.

The Petri net-derived complexity scores strengthen this picture by providing a more formal
representation of the procedural demands of iron technology. High complexity in T5 is not only an
abstract property of the Petri net; it corresponds to historically significant features such as multi-
stage procurement (ore, fuel, clay), workshop organisation and sequential forging. When these
demands are placed next to evidence for larger, more permanent settlements and increasing social
differentiation, it becomes easier to argue that the rise of iron technology was both a driver and a
consequence of socio-economic transformation.

At the other end of the sequence, the fact that microlithic technologies register as medium
complexity is consistent with interpretations of Late Pleistocene foragers in Purulia as cognitively
sophisticated, landscape-savvy groups able to manage risk and seasonality through flexible toolkits
(Basak & Srivastava, 2017). The Petri net framework makes it clear that “microlithic” does not
mean “simple” in an organisational sense.

4.4 Comparison with other regions and methods

Fajardo et al. (2023) developed their Petri net approach in the context of European adhesive
technologies and other complex tasks, showing that their metrics could distinguish between
comparatively simple and elaborate Neanderthal and Homo sapiens workflows. The present study
extends this approach to a different technological and geographical domain, indicating that Petri
net-based metrics are sufficiently general to be applied across continents and material classes.

Other attempts to quantify technological complexity have used measures such as the number of
distinct operations, the diversity of tools involved or subjective expert rankings (e.g., Tostevin,
2011; Lycett & Eren, 2013). Petri nets bring two advantages. First, they capture not just the number
of steps but also their coordination and branching structure. Second, they provide an explicit model
that can be inspected, critiqued and modified as new archaeological data become available.

At the same time, the current application has clear limitations. The Bengal workflows are
reconstructed at a fairly coarse level, and some steps are collapsed for comparability. The
complexity scores are therefore best seen as relative indicators rather than as precise
measurements. A more ambitious programme would include multiple variants of each technology,
model uncertainty explicitly and use dedicated Petri net analysis software to derive more detailed
metrics.
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4.5 Methodological reflections and limitations

Several caveats are worth stating clearly. First, the small sample size and stylised nature of the
workflows mean that the results cannot be generalised beyond the specific technologies and
contexts modelled here. Second, the assignment of contextual scores for settlement and craft
specialisation is somewhat subjective, relying on synthesised descriptions rather than site-by-site
quantification.

Third, the use of ordinal categories for complexity, while appropriate for an exploratory study,
hides some of the nuance that more fine-grained metrics could provide. Future work could, for
example, distinguish between different kinds of behavioural complexity (e.g., alternative paths vs
concurrency) or apply information-theoretic calculations more strictly, as in Fajardo et al. (2023).
Finally, the method shifts part of the interpretive burden from typological listing to model building.
Constructing Petri nets requires assumptions about where one step ends and another begins. These
assumptions need to be made explicit and opened to debate, rather than treated as hidden
technicalities.

5. Conclusion

This paper has demonstrated that the Petri net-based technological complexity framework proposed
by Fajardo et al. (2023) can be adapted to a South Asian archaeological dataset, in this case a set of
five representative technologies from ancient Bengal and eastern India. By encoding core-and-flake
handaxe production, microlithic bladelet production, ground-stone axe manufacture, copper
ornament casting and bloomery iron smelting as Petri nets, and by evaluating them using three
complexity dimensions, the study has produced several substantive and methodological insights.
Substantively, the results support a clear gradient in technological complexity from early lithic
technologies to iron smelting, with microlithic and ground-stone technologies occupying
intermediate positions. This gradient aligns with independent evidence for increasing settlement
scale, craft specialisation and participation in wider exchange networks, supporting the hypothesis
that technological and socio-economic change in Bengal were tightly linked (Chakrabarti, 1993;
Datta, 2010; Ray & Mondal, 2013).

The analysis also highlights that microlithic and ground-stone technologies, often described in
simple terms, are organisationally quite demanding. Their medium complexity scores suggest that
Late Pleistocene and early agricultural communities in Bengal were managing multi-step,
structured workflows that required stable traditions of technical knowledge and social learning
(Basak & Srivastava, 2017; Datta & Sanyal, 2013).

Methodologically, the study illustrates how Petri nets can serve as a bridge between qualitative
chaine opératoire reconstructions and quantitative complexity metrics. By making assumptions
explicit in model form, they invite transparent debate and cumulative refinement. Even with small
samples, ordinal complexity scores can help organise comparative discussions and reveal patterns
that might otherwise remain implicit.

Looking ahead, several extensions suggest themselves. Additional technologies, such as ceramic
firing sequences, bead production and high-temperature glass or faience technologies, could be
modelled in the same way, allowing a more comprehensive mapping of Bengal’s technological
landscape. More detailed modelling of variants within each class, combined with sensitivity
analysis, would strengthen confidence in the metrics. Finally, closer integration with cognitive
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archaeology, including experimental replication and neuroarchaeological work, could deepen our
understanding of how different levels of technological complexity were experienced and
maintained by ancient craftspeople.

For now, the main contribution of this paper is to show that quantitative measures of technological
complexity are feasible and informative for ancient Bengal. When combined with the rich
contextual work already done by archaeologists in the region, such measures can help turn

qualitative impressions of “simple” or “complex” technology into more explicit, testable claims

about how people, materials and knowledge came together over the long term.
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