Raspberry Pi Performance analysis across its Operating System in LED Control Operation
Main Article Content
Abstract
Raspberry Pi's performance for LED control operations varies across operating systems based on factors like GPIO response time, CPU utilization, and resource efficiency. Raspberry Pi OS delivers the best overall performance due to its hardware optimization, offering low latency and stable operation. Lightweight OSs like DietPi provide comparable GPIO control with minimal resource usage, making them ideal for constrained environments. General-purpose systems like Ubuntu exhibit slightly higher latency and CPU load but maintain broad compatibility. Libraries such as RPi.GPIO, pigpio, and wiringPi significantly influence control precision and ease of use, with pigpio excelling in high-precision tasks. Overall, Raspberry Pi OS remains the optimal choice for LED control, particularly for standard or beginner applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Mahore, V., Soni, P., Patidar, P., Nagar, H., Chouriya, A., & Machavaram, R. (2024). Development and implementation of a raspberry Pi-based IoT system for real-time performance monitoring of an instrumented tractor. Smart Agricultural Technology, 9, 100530.
Mathe, S. E., Kondaveeti, H. K., Vappangi, S., Vanambathina, S. D., & Kumaravelu, N. K. (2024). A comprehensive review on applications of Raspberry Pi. Computer Science Review, 52, 100636.
Rzepka, K., Szary, P., Cabaj, K., & Mazurczyk, W. (2024). Performance evaluation of Raspberry Pi 4 and STM32 Nucleo boards for security-related operations in IoT environments. Computer Networks, 242, 110252.
Martínez-Fuentes, O., Díaz-Muñoz, J. D., Muñoz-Vázquez, A. J., Tlelo-Cuautle, E., Fernández-Anaya, G., & Cruz-Vega, I. (2024). Family of controllers for predefined-time synchronization of Lorenz-type systems and the Raspberry Pi-based implementation. Chaos, Solitons & Fractals, 179, 114462.
Arreaga, N. X., Enriquez, G. M., Blanc, S., & Estrada, R. (2023). Security Vulnerability Analysis for IoT Devices Raspberry Pi using PENTEST. Procedia Computer Science, 224, 223-230.
Neto, A. J. A., Neto, J. A. C., & Moreno, E. D. (2022). The development of a low-cost big data cluster using Apache Hadoop and Raspberry Pi. A complete guide. Computers and Electrical Engineering, 104, 108403.
Fan, H., Dong, Q., Guo, N., Xue, J., Zhang, R., Wang, H., & Shi, M. (2023). Raspberry pi-based design of intelligent household classified garbage bin. Internet of Things, 24, 100987.
Murray, M., McCavana, J., & Loughman, E. (2024). PyDAP: Automated dental OPG beam area measurement using python and raspberry Pi camera. Physica Medica, 120, 103338.
Wang, M., Koo, K. Y., Liu, C., & Xu, F. (2023). Development of a low-cost vision-based real-time displacement system using Raspberry Pi. Engineering Structures, 278, 115493.
D'Alton, L., Carrara, S., Barbante, G. J., Hoxley, D., Hayne, D. J., Francis, P. S., & Hogan, C. F. (2022). A simple, low-cost instrument for electrochemiluminescence immunoassays based on a Raspberry Pi and screen-printed electrodes. Bioelectrochemistry, 146, 108107.
Kondoro, A., Dhaou, I. B., Tenhunen, H., & Mvungi, N. (2021). Real time performance analysis of secure IoT protocols for microgrid communication. Future Generation Computer Systems, 116, 1-12.
Tso, F. P., White, D. R., Jouet, S., Singer, J., & Pezaros, D. P. (2013, July). The glasgow raspberry pi cloud: A scale model for cloud computing infrastructures. In 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops (pp. 108-112). IEEE.
Kumar, G. H., Raja, D. K., Suresh, S., Kottamala, R., & Harsith, M. (2024, August). Vision-Guided Pick and Place Systems Using Raspberry Pi and YOLO. In 2024 2nd International Conference on Networking, Embedded and Wireless Systems (ICNEWS) (pp. 1-7). IEEE.