The Formation of Secondary Organic Aerosol (SOA) And Effect Global Climate

Main Article Content

Dr.Manoj Kumar

Abstract

Secondary Organic Aerosols (SOA) are a major component of atmospheric particulate matter and play a significant role in influencing global climate and air quality. SOA are formed through the atmospheric oxidation of volatile organic compounds originating from both natural and anthropogenic sources, followed by the partitioning of low-volatility products into the aerosol phase. These particles affect the Earth’s radiative balance directly by scattering and absorbing solar radiation and indirectly by altering cloud formation, cloud albedo, and precipitation processes through their activity as cloud condensation nuclei. The formation, composition, and climatic impacts of SOA are highly sensitive to environmental conditions such as temperature, humidity, oxidant availability, and emission patterns. Despite extensive research, large uncertainties remain in quantifying SOA formation pathways and their interactions with clouds and radiation in climate models. This study reviews the mechanisms of SOA formation and evaluates their direct and indirect effects on global climate, highlighting current challenges and future research needs.

Article Details

How to Cite
Dr.Manoj Kumar. (2025). The Formation of Secondary Organic Aerosol (SOA) And Effect Global Climate. International Journal of Advanced Research and Multidisciplinary Trends (IJARMT), 2(2), 1306–1321. https://doi.org/10.65578/ijarmt.v2.i2.705
Section
Articles

References

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., … Wildt, J. (2009). The formation, properties and impact of secondary organic aerosol: Current and emering issues. Atmospheric Chemistry and Physics, 9(14), 5155–5236.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., … Worsnop, D. R. (2009). Evolution of organic aerosols in the atmosphere. Science, 326(5959), 1525–1529.

Kroll, J. H., & Seinfeld, J. H. (2008). Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 42(16), 3593–3624.

Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., … Zaveri, R. A. (2017). Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 55(2), 509–559.

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., … Wilson, J. (2005). Organic aerosol and global climate modelling: A review. Atmospheric Chemistry and Physics, 5(4), 1053–1123.

Donahue, N. M., Robinson, A. L., Stanier, C. O., & Pandis, S. N. (2006). Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology, 40(8), 2635–2643.

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., … Kulmala, M. (2014). A large source of low-volatility secondary organic aerosol. Nature, 506(7489), 476–479.

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., … Worsnop, D. R. (2007). Ubiquity and dominance of oxygenated species in organic aerosols. Geophysical Research Letters, 34(13), L13801.

Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science & Technology, 41(5), 1514–1521.

Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.

Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520–7540.

Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., … Seinfeld, J. H. (2008). Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 8(14), 4117–4140.

Tsigaridis, K., & Kanakidou, M. (2003). Global modelling of secondary organic aerosol in the troposphere. Journal of Geophysical Research: Atmospheres, 108(D3), 4009.

Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petäjä, T., Worsnop, D. R., Kulmala, M., & Donahue, N. M. (2012). The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 5(7), 453–458.

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.